Exercises

Lecture 1

1). For SU(N) with the normalization $\int dg 1 = 1$, evaluate the integrals

$$\int dg \operatorname{Tr} g$$

$$\int dg (\operatorname{Tr} g)^{2}$$

$$\int dg (\operatorname{Tr} g)^{3}$$

$$\int dg |\operatorname{Tr} g|^{2}.$$

- 2). Show in pure gauge theory that forgetting to integrate over a single arbitrary link leaves all gauge invariant expectations unchanged.
- 3). In \mathbb{Z}_2 lattice gauge theory where all links are plus or minus one, find a configuration where every plaquette is negative.
- 4). In two dimensional Z_2 pure gauge theory, find an explicit expression for the average plaquette as a function of beta.
- 5). A Wilson loop is defined as the expectation value for the trace of a product of link variables around a closed loop. Show that in strong coupling for the pure gauge theory these loops fall exponentially with increasing minimal area enclosed by the loop. Should this rapid fall-off persist when quarks are present?

Lecture 2

- 1). In the SU(2) linear sigma model with degenerate quarks, show that the pion mass is indeed proportional to the square root of the quark mass.
- 2). Argue that in a gauge theory, changing the sign of the fermion mass in a fermion loop involving more than three interactions leaves the contribution unchanged. How can this argument fail for a triangle diagram.
- 3). For $g \in SU(N)$ find the locations and values of the maxima and minima of Re Tr g. Are there local maxima or minima that are not global? Are there saddle points?
- 4). For the three flavor non-linear sigma model, show that the charged and neutral pion mass difference is quadratic in the up-down quark mass difference. How does this work in the two flavor case?

Lecture 3

- 1). Show that the Wilson Dirac operator is not normal; i.e. D and D^{\dagger} do not commute. What about the Karsten-Wilczek, overlap, and staggered operators?
- 2). What is the motivation for using antiperiodic periodic conditions with fermions on a finite lattice?
- 3). Show that for arbitrary gauge fields the naive fermion matrix can be block diagonalized into four independent factors.
- 4). Consider a spinless fermions hopping on a lattice with the gauge group SU(2). Show that the theory at negative β is equivalent to conventional staggered fermions.

Lecture 4

1). In the SU(3) non-linear sigma model, show that the Dashen phase starts at

$$m_u = \frac{-m_d m_s}{m_d + m_s}$$

- 2). The strong CP phase is the phase of the determinant of the mass matrix. Can we rotate Θ into the top quark mass? If we do so, how can it be relevant to low energy physics?
- 3). The axion solution to the strong CP problem makes the phase of the mass matrix into a dynamical field that relaxes to zero. Show that the anomaly feeds through to give the axion a mass proportional to the trace of the light quark mass matrix. How do the heavy quarks (c,b,t) affect this?

General questions

- 1). A possible gauge fixing is to set to unity all links on a tree of links containing no loops. Find a tree such that the average expectation of the unfixed links doesn't vanish.
- 2). There is much discussion of possible zeros of "the" beta function for QCD at non-vanishing coupling. Define the coupling from the force between separated quarks as obtained from Wilson loops. Argue that the beta function associated with this definition of the coupling must have a zero at some $g \neq 0$. Find another definition of the beta function that only has a single zero at the origin.
- 3). Because of screening by dynamical quark pairs, Wilson loops in QCD with quarks always have a perimeter law. How is confinement defined then?
 - 4). The weak interactions involve the non-Abelian gauge group SU(2). Isn't this a

confining theory? How can we have free electrons and W bosons?

5). What does it mean for a particle to be "elementary"?